
Observations of Radio Burst Source Sizes 
and Scattering in the Solar Corona

Background

• Low frequency radio wave propagation in the sun’s
atmosphere (the corona) is not fully understood.

• Radio bursts in the corona are observed to be much
larger than predicted.

• This is most likely due to radio waves scattering off of
plasma density inhomogeneities in the corona.

• Some solar radio bursts offer density diagnostics of
the corona (Figure 1b).

• Fine scale spectral structure of these bursts indicate
a small source size (Figure 1b inset).

• Radio interferometers such as the LOw Frequency
ARray (LOFAR) have high angular resolution and can
help determine the level of scattering.

• A better understanding of scattering may lead to new
insights into the nature of coronal turbulence.
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Methods: Fitting in Fourier Space to Learn About  a Solar Radio Burst

• LOFAR measures the Fourier Transform of the
radio sky.

• The distance between each pair of antennae is
called a baseline.

• The baselines of LOFAR sample the amplitude and
phase information of the solar radio burst.

• Imaging algorithms are often used to recreate the
radio burst from interferometric observations.

• Radio imaging algorithms rely on a number of
input parameters to create an image.

• This can introduce artefacts, including changes to
the size and shape of the source.

• To avoid ambiguity in source characteristics we
directly fit a model to the observation in Fourier
space, also known as uv space (Figure 2).
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• The fit in uv space reveals a source with a
FWHM in real space of 18.8′ ±0.1′ and 10.2′
±0.1′ (contours in Figure 3).

• The size predicted by the fine scale spectral
features is 3.18′′.

• The observed source shows no structure
<10′ (Figure 2c).

• The large source size is not due to low
angular resolution or an imaging algorithm.

• Radio wave scattering is the cause of the
increased source size.

• The level of scattering is determined by the
relative root mean square density

fluctuations 𝜀 = < 𝛿𝑛2 >/𝑛 of turbulent
coronal plasma.

• The apparent radio burst position can be
used to calculate 𝜀 = 0.16.

Results: Using a Solar Radio Burst to Learn About Radio Wave Scattering
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• The calculated value of 𝜀 depends on the
characteristic length scale, h, on which scattering
occurs.

• This in turn depends on the assumed power
density spectrum of density fluctuations in the
corona.

• It is often assumed the power density spectrum is
that of the Kolmogorov description of turbulence.

• This has been shown not to be the case.

• Using a length scale appropriate to the power
density spectrum described by Coles & Harmon
(1989) reduces 𝜀 by 2 orders of magnitude.

• We conclude that until an accurate value of h is
determined, it is only possible to estimate an
upper limit of 𝜀 in the solar corona.

• Thus, it is likely that previously quoted values of 𝜀
in the literature are too big.

Summary

• Studying solar radio bursts at low frequencies may lead to new insights into the nature of coronal turbulence.

• A solar radio burst observed with LOFAR was fit in the uv plane to determine its size and position in real space.

• The radio source observed is much larger than predicted due to radio wave scattering in the solar corona.

• The extent of scattering was estimated from the radio burst position and given an upper limit of 𝜀 = 0.16.
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Conclusions: It’s More Complicated Than We Thought!


